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Density dependence of vibrational energy relaxation rates in supercritical solution:
A hydrodynamic model

V. B. Nemtsov*'" I. I. Fedchenia, A. V. Kondratenkband J. Schroeder
Abteilung fu Spektroskopie und Photochemische Kinetik, Max-Planck-InstituBifuphysikalische Chemie,
Am Fassberg, D-37077 ®mgen, Germany
(Received 30 April 1999

An approximate expression describing the density dependence of vibrational energy relaxation rates in fluids
in terms of thermodynamic and transport parameters of the fluid is developed on the basis of a classical
statistical mechanical theory of vibrational energy relaxation of highly excited molecules in polyatomic sol-
vents. The energy relaxation rate is expressed via the friction coefficient, which describes the interaction
between solute oscillator and solvent molecules. The corresponding force-force time correlation function is
expressed in terms of the dynamic structure factor of the solvent and the force of interaction between solute
and solvent molecules. Approximating the dynamic structure factor appropriately leads to expressions for the
density dependence of vibrational relaxation rates in terms of thermophysical solvent parameters. Using these
expressions the density dependence of vibrational relaxation rates in supercritical ethane and propane both in
the vicinity of the critical point and far from it are evaluated and compared with measured relaxation rates
obtained under the same physical conditidi$1063-651X99)15710-§

PACS numbes): 82.40—g, 31.70.Hq, 82.20.Rp

[. INTRODUCTION scopic forces defined with the help of density functional
theory[3], though the appearance of the dynamic structure
The increasing importance of supercritical fluids in factor in such an approach seems to be unphysical. One may
chemical processes such as extraction and waste dispog¥itain the correct relation for the time correlation function of
techniques has initiated numerous studies on more funddhe microscopic force via the dynamic structure factor and
mental aspects of chemical reaction kinetics in fluid mediathe above mentioned force.
Among these systematic investigations of the density depen- The important role of local density in vibrational relax-
dence of vibrational energy transfer from highly excited spe-&tion was discussed for the case of supercritical fluids in a
cies to a fluid solvent medium are of particular importance,€cent papei2]. In the supercritical state density fluctuations
as this process plays a central role as a competing ener e very S|gn|f|canF, of course, and may be described with the
degrading process in essentially every thermally, chemicall ,eIp of th_e dynamic structure faCtO'f- It appears that HBIs
or photochemically activated reaction. The density range\:Nas the.ﬂrst'to employ the dynamlc'structur.e factor to c;al-
covered and accuracy achieved in such experimgnig] culate vibrational relaxation rates via the time correlation

d I 10 test diff t th tical dels. O unction of the potential of interaction between solute and
nowadays allows us 1o test difierent theoretical models. O, ant molecules. In contrast to his work we shall apply the

particular interest for the practitioner would be model de'dynamic structure factor to calculate the “force-force” time
scriptions that in addition to density and temperature of the,q relation function.

fluid require as input only basic physical fluid parameters 0 | the present work we shall derive a representation of the
estimate the energy transfer rate constant. friction coefficient of the solute oscillator in terms of the
The time scale of vibrational energy transfer can be chargynamic structure factor of the solvent and the interaction
acterized by the corresponding vibrational energy relaxatiofiorces between oscillator and atoms of solvent molecules.
time or its inverse, the relaxation rate, which according to theThis representation is based on a general expression for the
Landau-Teller mod€]5] is proportional to the friction coef- friction coefficient in form of the force correlation function.
ficient. This coefficient is expressed by the time correlationBy using approximate expressions for the dynamic structure
function of the microscopic force exerted on the solute osfactor we derive equations for the friction coefficient for the
cillator by the solvent molecules. This force correlation func-supercritical fluid both in the vicinity of the critical point and
tion can be calculated approximately by a variety of methodsar from it. These relations enable us to evaluate the density
such as those based on the Gaussian model for the foreependence of the relaxation rate using experimental data for
correlation functior{6] or on other models using short-time thermodynamic and transport properties for ethg@leand
expansions of the time correlation functipfl. In one recent  propang/10,11].
approach the microscopic forces are replaced by macro-

Il. GENERAL EXPRESSION

. FOR THE FRICTION COEFFICIENT
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coefficient of vibrational energy relaxatiok: [12,13 in w N
terms of the time correlation function of the rate of vibra- Kcz(ckBTz)*lf Z (Vo (1)Vo(0)):(F,(t)F,(0))dt.
0 a=1

tional energyE change of the excited molecule 7)
KC:J (E(t)E(O))dt/((EZ)—(E)Z), (1) In the case (_)f a spherically symmetric potential _and vibra-
0 tional velocities we can further simplify and obtai for

. one vibrational mode as
whereE=dE/dt, and the angular brackets denote Gibbs ca-
nonical averaging over the bath. K= (CkaT2 —1f°° DVIOVWE(H)F(0))dt 8
The transfer of energ¥ of the excited molecule to the c=(ckeT") 0 (VOVO)(F(DF(0))dt. ®
solvent bath is caused by the interaction between atoms of .
the solute and the solvent molecules. The rate of energyaking into account the relations

change is defined by (v(HHv(0))=m~kgT Ree'“ and c=kg

n

E()= >, v (t)-F(t). (2)  We obtain the Landau and Teller expression for the rate of
a=1 “ vibrational relaxatiorf5,14,15,
Herev,, is the vibrational velocity of the atom, F, is the Ke={(w)/m, (9)
force exerted on atora by the solvent, and is the number . o o
of atoms in the solute. where{(w) is the friction coefficient andn the reduced mass
Taking into account relatiofE?) — (E)?=ckgT? and Eq. of the oscillator. So the friction coefficient is defined in terms
(2) we can write of the force time correlation function
n n %
Ke=(cksT) 2 < S S Va0 F L (DF4(0) )it {1~ (FOF©)cosotat, p=(g)T"
0 \a=1p=1 - (10

. Returning to the general case, it is necessary to consider the
wherekg is the Boltzmann constant afids the temperature, friction tensors

c is the thermal capacity of the solute molecule, and the
colon denotes the dyadic inner product. o
The expression in Eq.3) may be represented in normal g“aa(w):BJ- (Fo(1)F,(0))coswt dt, (11
coordinates], and normal force®,, of the solute molecule. 0
This results in

KC:(CkBTZ)fl gaﬁ(w)zﬁfo <Fa(t)FB(0)>Coswtdt (12)

= 300308 These tensors arise from E@) by assuming that there are
Xf < Z’l 321 qﬂ(t)qB(O)Qa(t)Qﬁ(o)> dt, no correlations between velocities and forces. Then the inte-
grand in Eq.(3) may be written as

0
4

n
where 31—6 is the number of vibrational degrees of free- > > (Va(1)V5(0):Fo(t)F4(0))
dom for a nonlinear solute molecule. If one assumes that  «=15=1

coupling between different normal modes is weak and can be

n
neglected, the ratk¢ is simply =871 (Va(H)Vo(0)): Yault)
a=1

n

3n—6
Ke=(ckgT?)? JO < gl qa<t>qa<0>Qa<t>Qa<0>>dt.
(5)

In addition we suppose that coupling between velocities an

forces is weak, and that therefore it is possible to approxi- _ _
mately uncouple the correlation function into the product of Vel )= BF(UF(0)) and  yo(t) ’8<F“(t)Fﬁ(o()1>4)
correlation functions of velocities and forces:

+ﬂ*1a§ﬁ > (Va(DV4(0)): Yap(t), (13)

avhere

are force correlation functions that allow the determination
N . . of the friction tensors. These are also significant for other
Ke=(cksT?) lfo Z’l (84a(1)84(0))(Qa(t)Qu(0))dt. problems in chemical kinetics, €.gy,.(t) and y,4(t) are
(6)  important in the theory of chemical reaction rates in con-
densed phasd46]. In our case the coupling between differ-
If we assume the same approximations also hold for ordinargnt velocitiesv,, andvg (in other words, coupling between
velocities and forces we obtain the expression different modegdictates the correlations between forées

3n—6
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andF exerted on different atomas and 8 by solvent mol- mediate scattering function because it is expressed in terms
ecules. On the basis of Eqd.1) and(12) we may calculate Of the Fourier transformation of atomic density fluctuations
the coupling mentioned above from the difference between
fricti_on tens_orsg’aa and gaﬁ. This coupling originates from Pa(k,t):f ek T 8p,(r,t)dr
the interaction of the excited molecule with the solvent.

Let us denote withy and § the atoms in solvent molecule
i. Then we shall denote &'=3,; ,B(r,,i|) the force acting
on atomea due to interaction yx{lth atoms belonging t_o the Foolk)=N"Yp(k,1)p.(—k,0). (20)
ith solvent molecule. Here,,i is the vector connecting at-
oms« and y. It should be noted that also may be consid- By substitution of Eq.(19) into Eq. (18) and by using the

ered as the index of the vibrational mode of the excited mOl'Fourier representations for fochSr) and B(r’) of the type
ecule. Then B* must be considered as the relevant

generalized force. Now we calculate the force correlation
function in form of the dyadic

by the relation

B(r)=(2w)’3f B(k’)e k" rdk’

faa() =(B*(1)B*(0)) (15  and after going through some simple transformation, we find

. . " the following theoretical expression féft):
using the identities

n
B(1)=3 B(lra) =3 ar or—r,,B(r) fw“):(zﬂ)ajdkFM("'”B(")B("‘)' 2y

Finally, after Fourier transformation according tQ.(w)
=(27) 71" _f,.(t)e“ dt we obtain the following result
for the friction coefficient:

and

Ba<0>=j25 B(lrag,-|>=j25 dr' 8(r' —r 5 B(|r']),
(16) {aal@)=Bn(27m) "3 f dk S,u(k,@)B(K)B(—K), (22)

where 4(r) is the Diracé function. Then we introduce mi-
croscopic densities of particle numbers by means of the revhere
lations

saa(k,w)=<2w)*1f dtF,,(k,t)e't (23
pa<r,t>=§ Sr+r () —r,ib],

is the atom-atom dynamic structure factor.
17 Similarly, we now consider the friction tensdr,; ac-
p(r',0= 2 Sr'+r1,0)—r45(0)], counting for the correlation between forcgs applied to differ-
3] ent atoms(a and B) of the solute. In this case the force

correlation functiorf,, ;= (B*(t)B#(0)) is determined as
realizing that «p=(B(t)B7(0))

Fayi=TyiTar Tasi=Vsj—las faﬂzfdrfdr’(5pa(r,t)5pﬂ(r’,t))B(r)B(r’), (24

wherer,, r,i, andrs; are the positions of atora, yi, and heres ds f . L ic densiti
8] with respect to the laboratory fixed reference frame. InVhe€reop, andop are fluctuations In microscopic densities
this case the force correlation function is given by of parthle number_s def]ned by E(j.?)..Then the correl_atlon

of density fluctuations is expressed in terms of the interme-

diate scattering function for different atorfs, g(k,t),

fm(t)Zf drf dr'(8pu(r,t)6p,(r'0))B(r)B(r'),
n _

(18 <5pa(r,t)5pﬁ(r',0)>=(27)3f Fap(k,tye ™ Rdk.
whereSp=p(r,t) — pg is the density fluctuation with respect (25
to its equilibrium valuep,. But the correlation of density o
fluctuation may be represented by the intermediate scatterirfges(K.t) is given by
functionF _,(k,t),

Fop(k,)=N"1(p, (k1) Spg(—k,0)). (26)
(8p(1,1)8p(r',0)= f F..(k,He *Rdk The final result for the friction tensor, as in the case of,
aorme (2m?3J) ' can then be formulated as
(19
where R=r'—r, k is a wave vector, anch=N/V is the {aﬁ(a))=ﬁn(2'n')_3f dk S, 5(k,)B(K)B(—k), (27)

number density of the solvef¥olumeV of solvent contains
N molecule$. The functionF,,(k,t) is the atom-atom inter- where
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. ot structure and the dynamics of the medium, and from interac-
Sup(k,0)=(2m) f dtF,g(k,t)e' (28)  tions of the excited molecule with the medium.

is the atom-atom dynamic structure factor for different at-1j|. MODELS FOR THE DYNAMIC STRUCTURE FACTOR
oms. OF SUPERCRITICAL FLUIDS

Next we consider more explicitly the structure of interme- . o )
diate scattering functions. IR, R;, and R, are center of In order to estimate vibrational relaxation rates we need to
mass coordinates of the solute and of solvent molecule§MPIoy & model for the dynamic structure factor. At first we
(i andj), then shall consider the static structure factor. Settirg) in Eq.

(30) we obtain the atom-atom structure factor
r,=R+d,, r,i=Ry+d,, rg=R;+dg,
o Suak)=(n?N) 2

where vectorsl, , d.i, andds; describe positions of atoms

o

a, v, and & with respect to the center of mass of the solute % 2 g 1K[Ri(0)=Rj(0)]g—ik-[di,(0)~djs(0)] )
and solvent molecules, respectively. Taking this into account 1,0
we write explicit expressions for the intermediate scattering (33)
functions,
where the facton 2 (n is the number of atoms in a solvent
Faﬁ(k,t)=N1< ik [R()=R(0)]g—ik-[dy(t) ~dg(0)] molecule is included in order to obtain the correct limit in
the case of a monoatomic fluid whej]y:djﬁzo. After
_ _ separating thé=j andi # j terms we find the expression for
X e'k'[Ri(‘)Ri<°)]e'k'[diy“)djﬁ(°>]>, S,. in the form of the sum of intramolecular and intermo-
79l lecular contributions,
(29)
SaalK) = Sinra(K) + Sinted k) s (34)
Faa(k,t)=N1< ek RO -RO0)]g=ik-[dy(t) ~da(0)] where
x> eik~[Ri<t>R,-<o>]eik-[dw<t>dm0>1>_ Sira(K)=n"% 2, e‘ik'[Ri<°>‘Ri(°”e“k'<div‘di5>>,
ot Y
71,0) (35
(30
Factors exfik-[R(t)—R(0)1}, explik-[d,(t)—dg(0)]}, Sl K)=(n?N) 1>, > (e K (Ri-Rpg-ik-(diy=djs)y,
and exgik-[R(t)—R(0)]} xexplik-[d,(t)—d,(0)]} in #l v (36)

Egs. (29) and(30) describe the influence of the solute mol-
ecule on the dynamic structure factor of system. This influ-
ence is connected with the center of mass motion of the
solute and with its intramolecular motion. But in the case of d (0)=d. , d (0)=d, R(0)=R.
F . att=0 this factor equals 1. In the same way the sums in Y g ls
Egs.(29) and (30) take into account the intramolecular and |, the following we shall consider the rigid molecule ap-
mtTrmoIecuIar motions _of sqlvent particles. proximation[17—19 such that

n the case of a fluid without structured molecules the

functionF(k,t) becomes the ordinary intermediate scattering 1 sinkd,; 1 sinkd,
function such that Sinwa(K) = 12 ~ kd,, n? ( n+ Z‘,; Ty&) ’
(37
F(k,O)zf S(k,w)dw=S(k), (3D
where d,s is the distance between atomsand ¢ in the

solvent molecule. This result is obtained after unweighted
averaging over the orientation of a molecule. The intermo-
_ lecular term is averaged over the angular pair distribution
S(k)=1+nJ' dr[g(r)—1]e'*" (32 function g(Ry,,w;,w,), Wherew, and w, are orientations
of two molecules andR,, is the distance between their cen-

andg(r) is the pair distribution function of the solvent. The ters of mass. Subtracting the term which corresponds to for-
friction coefficient in Eq.(22) may be considered as the drag Ward scattering and expandingR;,,w;,w;) in spherical
coefficient for the generalized force between the vibrationaharmonics one can sho8,19 that
coordinate of the solute and its bath partners. By using the 1 sinkd\2
atom-atom structure factor there is no need to assume that iy
the probe molecule does not move as in R8}. It is not Sei(K) (n 27 kd;, ) (Se(k)=1)+S,(k), (39
without interest that in our final formula@2) the friction
coefficient is separated into contributions arising from thewhereS; is the center of mass structure factor

whereS(k) is the traditional static structure factgt7]
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iR Here Sc(0)=B"'nK; [17], K+ is the isothermal com-
Sc(k)=1+nJ (9c(R)—1)e dR (39 pressibility, £ is the correlation length for density fluctua-
tions. Not far from the critical point one h&(0)>1, such

. . . . . that
and gc(R) is obtained after averaging over orientations of
two molecules, i.e.gc(R)=(9(R,w1,®2)),, ., The last Se(0)
term S,(k) is the so-called anisotropic part. It is small if the Sc(k)=1+ —
anisotropic part of the intermolecular interaction is weak. 1+k€

The expression fo6,,(k) becomes simpler in the case of _ _ _
diatomic molecules or when a molecule may be modeled ath the following we shall use the inverse correlation length

a two-site object. The static structure factor then simply b= ¢ * such that Eq(44) may be rewritten as
given by[17]
Sc(0)b?

Sc(k)—lzm- (45)

(44)

1 sinkd
Saa(k): E 1+ W +

sinkd) ?
(40) If the fluid approaches the critical point correlation length
and isothermal compressibility diverge according2a—24

whered is the distance from the center of the solvent mol-
ecule to its site.

Let us consider some properties of this structure factor. In .
the limit k0 due o relations imsinkdkd=1 and Sy(k)  Where»=0.630,y=1.2415 are the universal exponens,

K—0 and K; are critical amplitudesAT=(T—T¢)/Tc. The

=0 for S,,(k) one gets quantitiesé, andK? are system dependef5]. Along the
critical isotherm the correlation length and compressibility
behave as

E=&(AT) Y, K=KY|AT) 7,

Saa(o)zl—’_nf(gC(R)_l)dRzﬂianTv (41)
E=[Ap|7"P Ky=[Ap| ™7,

where Ky is the isothermal compressibility. Correspond-whereAp=(p—pc)/pc and B=0.324 is another universal
ingly, lim,_ o Siner=1 and lim_ o Smwa=3 (in the general exponent.

case lim_ oSiwa=1/n). It is very important that due to the In the following we consider a fluid with structureless

molecular structure the functioB:(k) is modulated by the molecules. For modeling the dynamic structure factor we

factor (sinkd/kd)?. will use the short-time expansion of the intermediate scatter-
Further let us considef ,g(k,t) att=0, that isS,5(K).  ing function, F(k,t), because this expansion corresponds to

On the basis of Eq(29) for F,g(k,t) and Eq.(30) for  yiprational mode frequencies of the excited molecule. The

Faa(k,t) we can see that the difference betwe®p(k,t)  short-time expansion written as a Taylor series has the form
and S,,(k,t) is connected with the term efig-[d,(0) [26]

—dg(0)]} containing the solute interatomic distance, (

—dp). Averaging this factor over the molecular orientation _ o= t2 g t4 =
we obtain the simple relation Flkt)=o (k)= 570 (K) + 7o (K)+---, (46
sinkb,g where we have included only the first three terms relevant to

Sap(K) = kb, Saal(K), (42 our discussion. The coefficients are defined as moments of
the dynamic structure factor

where b,z=|d,—dg|. If atom « coincides with atompg 1 = -
(boz=0), we haveS, (k) =S,(k). At k== we obtain w“(k)=—f 0*S(K.w)do. 7)
S.5(*)=0 becauseS,,(=)=n"'. At k~0 we find that 27 ) -
Sa5(0)=S,,(0). With increasingk the structure factor )
S.s(k) decreases and becomes smaller t8ap(k). There- ~ One can show easilj26] that
fore, one can expect thdt,; is smaller thary,, . _ _

In recent years the structure of supercritical liquids has w%(k)=S(k), w*(k)=(kvg)?, (48)
been intensively investigatd@0,21]. One important result
emerging from these studies is that the static long-rang@&herevy=+/1/8mgis the mean thermal velocity. The fourth
structure of supercritical fluids may be described by themoment is expressed by the high-frequency elastic constant
Ornstein-Zernike expression. Taking this observation intoC,4(k) of the solven{26]
account, the static structure factor has the fdim,22

0*(k) =k2(kvg)?Cqy(k)/mgn. (49

w (43) Here mq is the solvent molecular mass ands its number

Sc(k)=1+ : . . S
1+k?&2 density. The elastic consta@, (k) is given by[26]
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n? 7 [B.(k) 2= k2p?(K). (59)
C11(k)=3nkgT+ _2f dr_g(r)(l—coskZ)—Z,

K Jz In this way, we find the general formula for the rate of vi-
(500 brational energy relaxation

whereg is the solvent-solvent pair potential agdr) is the 0T 7o
corresponding pair distribution function. On the basis of the vy ch—ch—-
expansion Eq(46) we extrapolate the time dependence of K.= 2pn 3 d?s(k) s(k) kp?(k) 2
F(k,t) to longer times with the help of the simple function voMo(27) vC—-1 chZT 4 chas
_ Y
F(k,t)=S(k)cosyést/chyt. (51 (60)

Parametersy and & are determined by the requirement that Now let us consider the derivation of the calculated for-
this function has the same short-time expansion as4®).  mula for the high-frequency elastic const&ht(k). For this
The extrapolating function cogst/chyt was first suggested €nd we will use the expression

by Douglass[27] and then successfully used by many au-

. : 2 2
thors(see, for example, the list of referenceq ). Rewrit- d°¢ 1de d%e
ing Eq. (46) in the form F(k.t)/S(k)=1—At2+Bt* and G dr S orcos oo, (62)
comparing with the short-time expansion of Ef1) results
In where ¢ is the angle between vectkrandr. After integrat-
ing over the angléy we obtain
y=JACC-D2, s=\(5-C)Jc-1), (59 9 g
3n o
where Cu(k)= FJFZWHZJ drro’(r)g(r)Fy(kr)
0
A= (kvg)?/2S(k), B=k?(kvg)?Cy(k)/24mnSK), B
(53 +2 nZJ’ drr2e"(r)g(r)Fy(kr). (62
C—6B/AZ, ™ @"(r)g(r)Fa(kr) (62)
This leads to an expression for the dynamic structure factoHere, ¢’ (r)=de/dr, ¢"(r)=d?@/dr?,
in the form
k) 4 (1 coskr sinkr)
» coSwt COSy st Fikn=—5l3+t 75— 73/
stkw=7silg [ 22 ar sy @37 k2 (kn)?
0 Ch’yt (63)
- Lin this f | b culated I " (k) 2 (1 2sinkr sinkr 2 coskr
e integral in this formula can be calculated analytically to Fo(krn=—|-+ T .
yield [28] ke13  (kr) kr (kr)
S(k) ch(wm/2y)ch(wal2) Below we will evaluate Eq(62) for the Lennard-Jones po-

(55)  tential on the basis of the Ornstein-Zernike expression for the
pair distribution function with the help of Laplace method
[29].
The Ornstein-Zernike formula fag(r) is given by

Sk, w)= v ch(wm/2y)+cosmd

or, considering Eqe52) and (53), we obtain

ch(wm/2y)ch(76/2) 5
= ry=0 for O=<¢"<oy,,
S(k,w)=25(k)y/S(k) ch(wnl2y) + cosns (56) g(r) <oy, o
7rbb2
For C>5 we get g(r)=1+w for r>o;,

25(k) vS(k) ch(wm/2y)ch(m5/2) (577 Wwhereb=1/¢, and¢ is the correlation length for the density

K,w)= . : .
Sthow) kvgyC—1 ch(wm/2y)+cosmé fluctuations. This leads to

24— 2
where 12¢ jn“e” “Kra

Cll(k):3n/ﬁ+
7)(a+13
5=\(C-5)/(C-1). (58) BlatT)(a+13)

X[(19a+9Df,(x) —(a+1)f1(x)]. (69
Bear in mind that the Fourier componeatk) of the force
B(r)=—Ve¢(r) has the form Herea=boj, x=koj, ande jand o are parameters of

the Lennard-Jones potential
- oL\ 12
where ¢(k) is the Fourier transform of the intermolecular p(r)=4se, R
solute-solvent potentiab(r). For the case when the vectior
is directed along axis we obtain while the functionsf; andf, are defined as

B(k)=ike(k),

=), (66)

6
U'LJ)




3820 NEMTSOV, FEDCHENIA, KONDRATENKO, AND SCHROEDER PRE 60

4 (1 cosy sin)() eh
f _ 1 B _repn,2 2 [a—
1(x) ?(3 = F) Ke mq Bdetos VAmsAN
. . (67) 3 /
f 2 (1+25|nx siny 2 cosy r dx wxx” S S(X)F( ). (73
_2(1 B w,X).
2()() XZ 3 X3 Y X2 O(|2—|—X2)4 /C(X)_l X

The Ornstein-Zernike structure factor may be represented biere y=kos, o, is the LJ parameter for the solvemty is
) ) the mass of the solvent molecufes= (kg), m, is the reduced
_ keTnKsa X mass of the solute oscillator, and is some normal mode

Sl = a?+ x? * a’+ x? (68) frequency of the solute. The functidf(w, x) has the form
For calculating the correlation length, which appears in the _mb e (@727) 4 g~ (Bwm/2y)
structure factor and i€,;(k) we will use the following for- F(“”X)_ChT 1+e 2o+ 26~ (BTN chrs (74
mula[9]:
b\ My P T (op e for e<5. For the case>5ch(--+) must be replaced with
§:§o( Cz) p (0_ — _f('9_> (69) cos@). It should be noted that due to the rapid convergence
Lopg ply Tldp)i_; ’ of the integral in Eq(15) its upper limit was put to infinity.
r 2 . . .,
The parametee . /m, we will consider as a fitting param-
where&, andI' are the critical amplitudes which are system eter.
dependent. In addition; and y are the critical exponent®,. If solute-solvent interactions are described by a Lennard-

and p., are the critical pressure and the critical density, reJo_nes potential, the Fourier transformation is determined
spectively. The temperaturg, is so-called reference tem- Wwith the help of[33]
perature, which may be put equal to T.5r 2T [9], where

T, is the critical temperature. The term with in Eq. (69) is F(wv+2)sinpm/2 _ lim 1 e K
the background term which has to be subtracted from 22pvt3 T A=0 (2m)3 e ’
p(dpldP)+ to ensure that becomes vanishingly small far (75)

away from the critical point.
wherel'(x) is the y function. Using this we obtain
IV. CALCULATION OF VIBRATIONAL ENERGY

otk K
RELAXATION RATES AND ITS ANALYSIS o(k) =87728|_JO'EJ( ]I-__(J)I_ Z) (76)
In the following we will compare our theoretical model ' '
with experimental results on the density dependence of thg,q the rate of relaxation is given by
vibrational energy relaxation of azulene in supercritical flu-
ids [1,2]. These experiments were done in fluid ethane and 2, Bmgm2al,An fxo ,
propane at temperatures close(te3 K) and far above the ke=—>—"—"—+""— XX
critical temperature of the solvent. Relaxation rates were cal- Mo 9
culated for two kinds of solute-solvent potential, a repulsive 9 2
and a Lennard-Jones potential as defined in(E6). «| X _Xs) S)VS(X) Flwx), (77)
A simple and analytically convenient expression for the 151200 JC(x)—1 o
repulsive potential i$30—32
where y=ko 5, and the functiorF(w,X) is determined as
<p(r)=srepe*”"r6p, (70 before. In this casey, (the upper limit of integrationis

considered as a fitting parameter.
where g, and o, are potential parameters, which for a  The correlation lengths are calculated by E$) with the
sequence of fluids are given [180,31. These parameters help of tables of thermodynamic daf83]. The follow-
differ from LJ parameter considerably, i.&,>€15, 0p ing values of parameters were used for ethadg:
<oy. According to[32] op=0y/l, wherel approxi- =1.9x10° m, I';=0.0563[9], P.=4.871x10° Pa, p
mately equals 20. In what follows we will take= 20. =206.7kg/nt; and for propane:&,=2x10"1° m, T,
The Fourier transformation of this potential is given by =0.058[25], P.=4.248< 1(f Pa, p.=220.5 kg/m. In both
cases the critical exponents are-0.63, y=1.242[9]. The

P(K) =8& e (L+ K20 (7)) calculated values of for ethane at 385 K and propane at
396.5 K and 372.5 K are shown in Fig. 1.
and for|B,(k)|> we obtain the expression At first, we discuss the numerical results #f, derived
from Eq.(73) using an Ornstein-Zernike structure factor and
|BL(K)|?= 6478 o )1 (14 K0 ). (720 a repulsive exponential potential to describe solute-solvent
interactions. Computed and experimental valuieg] for K
We note that the vectd is directed along axis. are presented in Figs. 2 and 3. The fitting parametém,

The rate of vibrational energy relaxation for the repulsiveequals 0.276 74 10" 2#/kg and 0.474% 10 2P/kg, re-
potential is evaluated on the basis of E80) and is given by  spectively, corresponding to physically reasonable values.



DENSITY DEPENDENCE OF VIBRATIONAL ENERGY . .. 3821

PRE 60
T T 1 T T T 8 T T T T
N\ /
' ’
3F : ‘\I E // .
! \ J
" ‘l 6F // ® -
' \ ’
! \ —_ , [
I‘ \‘ < K .
_ 27 . N T o
g I’ ,\\ g 4 B /‘ 7]
= i \
[ty I’ “ d L)
1t 4
oL 4
o P,
0 0 1 1 1 1
0 0 2 4 6 8 10

p (mol dm™®)

FIG. 1. Calculated density dependence of the correlation FIG. 3. As in Fig. 2 for azulene in propane Bt 396.5K.

lengths. ——, ethane ai=385K; —, propane aff=372.5K;

----, propane af’ =396.5K. Kc-values for ethane aT=385K and for propane aT

' =396.5K andT=372.5K are plotted in Figs. 2—4 in com-
From these figures we can conclude that the rate of relaxs_ icon with experimental datfl 2. Again we use the
ation of our model increases almost linearly, whereas they hqiein-zerike structure factor for these cases. The param-
experimental values at half the critical density show a Slowe(eter £2/m, was put to 0.4638 10 '5R/kg. Fitting at the
increase oK ¢ with density. The lineaKs(p)-dependence of ner jimit of integration yield,=8.10 for ethane ang,
our model, however, is in agreement with a theory that uses g ¢4 o, propane at 396.5 K ang==8.75 at 372.5 K
a d_:_frf]erelnt strycturfe fﬁthgg]' v d d 6 h We note that the agreement between the calculated values
he inearity of the 'enS|ty ependence t has a of the rateKc and the experimental values is satisfactory
sf[ralghtforwgrd _explan_atlon. The co_ntr|but|_on of the rep“"beyond the critical density. At high densities the Ornstein-
sive interaction in the integral EQ27) is _dommant for large Zernike approximation breaks down, and therefore we are
magmtude:?‘ of wave veptor(sb_he repulswe forces are large not able to give a description of the density dependence of
for small distances But in t.h|s region qf wave vectors the K¢ in this region on the basis of this approximation. The
struc_ture factor goes to un_lty and the mforma_ltlon abqut the'Upper limit of integration ofy,=8 corresponds to a distance
dent.s'tﬁ/ deper?dgzncet containedS(k) and also inC1y(k) is ¢y — 755, which indicates that we take into account the
partially washed out. = = local environment of an excited molecule, which plays a sig-
In some sense the situation is better for cases when trﬁﬁcam role in vibrational energy relaxation
solute-solvent interaction described by a Lennard-Jones po- '

tential is well beyond the critical density. Calculated
V. CONCLUSIONS

T M L] 1 T T T T
5| . We have derived an expression for the vibrational relax-
ation rate of a vibrationally excited molecule in supercritical
4+ // 1 8 — T T T
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FIG. 2. Density dependence of the vibrational relaxation Kate ot— 1 . 0 L
for azulene in ethane at 385 @, Experiment(Refs.[1,2]); —, 0 2 4 g 8 10
calculation for the LJ potential; ---, calculation for the repulsive p (mol dm™)

potential (with w=3.56x 10*s™* corresponding to the lower nor-

mal mode frequency of azulene FIG. 4. As in Fig. 2 for azulene in propane Bt 372.5K.
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solvents in terms of the dynamic structure factor of the soltive and qualitative way both far from and close to the sol-
vent and the force describing the interaction between soluteent critical density.
and solvent molecules. By using a hydrodynamic model for
the dynamic structure factor we find a connection between
the thermodynamic properties of the solvent and the rate of
vibrational relaxation of the excited molecule. In addition, The authors are indebted to Professaigém Troe for his
we establish a relation between the relaxation rate and theontinuing support of their work. Many thanks also are due
parameters of the solute-sovent interaction potential. to Dirk Schwarzer for many critical discussions. We are also
Calculations of vibrational relaxation rates of azulene ingrateful to P. Kutne and C. Schder for their effort in the
ethane and propane on the basis of a Lennard-Jones and evaluation of integrals in the final section of this paper. The
exponential repulsive potential permits us to reproduce thauthors are grateful to the Volkswagenstiftung for financial
density dependence of the experimental rates in a quantitaupport of the collaboration proje@Grant No. 170/62Y.
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