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Density dependence of vibrational energy relaxation rates in supercritical solution:
A hydrodynamic model

V. B. Nemtsov,* ,† I. I. Fedchenia, A. V. Kondratenko,† and J. Schroeder
Abteilung für Spektroskopie und Photochemische Kinetik, Max-Planck-Institut fu¨r Biophysikalische Chemie,

Am Fassberg, D-37077 Go¨ttingen, Germany
~Received 30 April 1999!

An approximate expression describing the density dependence of vibrational energy relaxation rates in fluids
in terms of thermodynamic and transport parameters of the fluid is developed on the basis of a classical
statistical mechanical theory of vibrational energy relaxation of highly excited molecules in polyatomic sol-
vents. The energy relaxation rate is expressed via the friction coefficient, which describes the interaction
between solute oscillator and solvent molecules. The corresponding force-force time correlation function is
expressed in terms of the dynamic structure factor of the solvent and the force of interaction between solute
and solvent molecules. Approximating the dynamic structure factor appropriately leads to expressions for the
density dependence of vibrational relaxation rates in terms of thermophysical solvent parameters. Using these
expressions the density dependence of vibrational relaxation rates in supercritical ethane and propane both in
the vicinity of the critical point and far from it are evaluated and compared with measured relaxation rates
obtained under the same physical conditions.@S1063-651X~99!15710-6#

PACS number~s!: 82.40.2g, 31.70.Hq, 82.20.Rp
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I. INTRODUCTION

The increasing importance of supercritical fluids
chemical processes such as extraction and waste disp
techniques has initiated numerous studies on more fun
mental aspects of chemical reaction kinetics in fluid med
Among these systematic investigations of the density dep
dence of vibrational energy transfer from highly excited s
cies to a fluid solvent medium are of particular importan
as this process plays a central role as a competing en
degrading process in essentially every thermally, chemica
or photochemically activated reaction. The density ran
covered and accuracy achieved in such experiments@1–4#
nowadays allows us to test different theoretical models.
particular interest for the practitioner would be model d
scriptions that in addition to density and temperature of
fluid require as input only basic physical fluid parameters
estimate the energy transfer rate constant.

The time scale of vibrational energy transfer can be ch
acterized by the corresponding vibrational energy relaxa
time or its inverse, the relaxation rate, which according to
Landau-Teller model@5# is proportional to the friction coef-
ficient. This coefficient is expressed by the time correlat
function of the microscopic force exerted on the solute
cillator by the solvent molecules. This force correlation fun
tion can be calculated approximately by a variety of meth
such as those based on the Gaussian model for the f
correlation function@6# or on other models using short-tim
expansions of the time correlation function@7#. In one recent
approach the microscopic forces are replaced by ma
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scopic forces defined with the help of density function
theory @3#, though the appearance of the dynamic struct
factor in such an approach seems to be unphysical. One
obtain the correct relation for the time correlation function
the microscopic force via the dynamic structure factor a
the above mentioned force.

The important role of local density in vibrational relax
ation was discussed for the case of supercritical fluids i
recent paper@2#. In the supercritical state density fluctuation
are very significant, of course, and may be described with
help of the dynamic structure factor. It appears that Hills@8#
was the first to employ the dynamic structure factor to c
culate vibrational relaxation rates via the time correlati
function of the potential of interaction between solute a
solvent molecules. In contrast to his work we shall apply
dynamic structure factor to calculate the ‘‘force-force’’ tim
correlation function.

In the present work we shall derive a representation of
friction coefficient of the solute oscillator in terms of th
dynamic structure factor of the solvent and the interact
forces between oscillator and atoms of solvent molecu
This representation is based on a general expression fo
friction coefficient in form of the force correlation function
By using approximate expressions for the dynamic struct
factor we derive equations for the friction coefficient for th
supercritical fluid both in the vicinity of the critical point an
far from it. These relations enable us to evaluate the den
dependence of the relaxation rate using experimental data
thermodynamic and transport properties for ethane@9# and
propane@10,11#.

II. GENERAL EXPRESSION
FOR THE FRICTION COEFFICIENT

In this section we shall derive a general expression for
friction coefficients in terms of the dynamic structure facto
To proceed, we start from a classical expression for the

ic

ty,
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PRE 60 3815DENSITY DEPENDENCE OF VIBRATIONAL ENERGY . . .
coefficient of vibrational energy relaxationKC @12,13# in
terms of the time correlation function of the rate of vibr
tional energyĖ change of the excited molecule

KC5E
0

`

^Ė~ t !Ė~0!&dt/~^E2&2^E&2!, ~1!

whereĖ5dE/dt, and the angular brackets denote Gibbs
nonical averaging over the bath.

The transfer of energyE of the excited molecule to the
solvent bath is caused by the interaction between atom
the solute and the solvent molecules. The rate of ene
change is defined by

Ė~ t !5 (
a51

n

va~ t !•Fa~ t !. ~2!

Hereva is the vibrational velocity of the atoma, Fa is the
force exerted on atoma by the solvent, andn is the number
of atoms in the solute.

Taking into account relation̂E2&2^E&25ckBT2 and Eq.
~2! we can write

KC5~ckBT2!21E
0

`K (
a51

n

(
b51

n

va~ t !vb~0!:Fa~ t !Fb~0!L dt,

~3!

wherekB is the Boltzmann constant andT is the temperature
c is the thermal capacity of the solute molecule, and
colon denotes the dyadic inner product.

The expression in Eq.~3! may be represented in norm
coordinatesqa and normal forcesQa of the solute molecule
This results in

KC5~ckBT2!21

3E
0

`K (
a51

3n26

(
b51

3n26

q̇a~ t !q̇b~0!Qa~ t !Qb~0!L dt,

~4!

where 3n26 is the number of vibrational degrees of fre
dom for a nonlinear solute molecule. If one assumes
coupling between different normal modes is weak and can
neglected, the rateKC is simply

KC5~ckBT2!21E
0

`K (
a51

3n26

q̇a~ t !q̇a~0!Qa~ t !Qa~0!L dt.

~5!

In addition we suppose that coupling between velocities
forces is weak, and that therefore it is possible to appro
mately uncouple the correlation function into the product
correlation functions of velocities and forces:

KC5~ckBT2!21E
0

`

(
a51

3n26

^q̇a~ t !q̇a~0!&^Qa~ t !Qa~0!&dt.

~6!

If we assume the same approximations also hold for ordin
velocities and forces we obtain the expression
-
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KC5~ckBT2!21E
0

`

(
a51

n

^va~ t !va~0!&:^Fa~ t !Fa~0!&dt.

~7!

In the case of a spherically symmetric potential and vib
tional velocities we can further simplify and obtainKC for
one vibrational mode as

KC5~ckBT2!21E
0

`

^v~ t !v~0!&^F~ t !F~0!&dt. ~8!

Taking into account the relations

^v~ t !v~0!&5m21kBT Reeivt and c5kB

we obtain the Landau and Teller expression for the rate
vibrational relaxation@5,14,15#,

KC5z~v!/m, ~9!

wherez~v! is the friction coefficient andm the reduced mass
of the oscillator. So the friction coefficient is defined in term
of the force time correlation function

z~v!5bE
0

`

^F~ t !F~0!&cosvt dt, b5~kB!T21.

~10!

Returning to the general case, it is necessary to conside
friction tensors

zaa~v!5bE
0

`

^Fa~ t !Fa~0!&cosvt dt, ~11!

zab~v!5bE
0

`

^Fa~ t !Fb~0!&cosvt dt. ~12!

These tensors arise from Eq.~3! by assuming that there ar
no correlations between velocities and forces. Then the i
grand in Eq.~3! may be written as

(
a51

n

(
b51

n

^va~ t !vb~0!:Fa~ t !Fb~0!&

5b21 (
a51

n

^va~ t !va~0!&:gaa~ t !

1b21 (
aÞb

( ^va~ t !vb~0!&:gab~ t !, ~13!

where

gaa~ t !5b^Fa~ t !Fa~0!& and gab~ t !5b^Fa~ t !Fb~0!&
~14!

are force correlation functions that allow the determinat
of the friction tensors. These are also significant for oth
problems in chemical kinetics, e.g.,gaa(t) and gab(t) are
important in the theory of chemical reaction rates in co
densed phases@16#. In our case the coupling between diffe
ent velocitiesva and vb ~in other words, coupling betwee
different modes! dictates the correlations between forcesFa
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3816 PRE 60NEMTSOV, FEDCHENIA, KONDRATENKO, AND SCHROEDER
andFb exerted on different atomsa andb by solvent mol-
ecules. On the basis of Eqs.~11! and ~12! we may calculate
the coupling mentioned above from the difference betw
friction tensorszaa andzab . This coupling originates from
the interaction of the excited molecule with the solvent.

Let us denote withg andd the atoms in solvent molecul
i. Then we shall denote asBa5S i ,gB(urag i u) the force acting
on atoma due to interaction with atomsg belonging to the
i th solvent molecule. Hererag i is the vector connecting at
omsa andg. It should be noted thata also may be consid
ered as the index of the vibrational mode of the excited m
ecule. Then Ba must be considered as the releva
generalized force. Now we calculate the force correlat
function in form of the dyadic

f aa~ t !5^Ba~ t !Ba~0!& ~15!

using the identities

Ba~ t !5(
i ,g

B~ urag i u!5(
i ,g

dr d~r2rag i !B~ ur u!

and

Ba~0!5(
j ,d

B~ urad j u!5(
j ,d

dr 8d~r 82rad j !B~ ur 8u!,

~16!

whered~r ! is the Diracd function. Then we introduce mi
croscopic densities of particle numbers by means of the
lations

ra~r ,t !5(
g i

d@r1ra~ t !2rg i~ t !#,

~17!

ra~r 8,0!5(
d j

d@r 81ra~0!2r d j~0!#,

realizing that

rag i5rg i2ra , rad j5r d j2ra ,

wherera , rg i, and r d j are the positions of atoma, g i , and
d j with respect to the laboratory fixed reference frame.
this case the force correlation function is given by

f aa~ t !5E drE dr 8^dra~r ,t !dra~r 80!&B~r !B~r 8!,

~18!

wheredr5r(r ,t)2r0 is the density fluctuation with respec
to its equilibrium valuer0 . But the correlation of density
fluctuation may be represented by the intermediate scatte
function Faa(k,t),

^dra~r ,t !dra~r 8,0!&5
n

~2p!3 E Faa~k,t !e2 ik•R dk,

~19!

where R5r 82r , k is a wave vector, andn5N/V is the
number density of the solvent~volumeV of solvent contains
N molecules!. The functionFaa(k,t) is the atom-atom inter-
n

l-
t
n

e-

n

ng

mediate scattering function because it is expressed in te
of the Fourier transformation of atomic density fluctuation

ra~k,t !5E eik•rdra~r ,t !dr

by the relation

Faa~k,t !5N21^ra~k,t !ra~2k,0!&. ~20!

By substitution of Eq.~19! into Eq. ~18! and by using the
Fourier representations for forcesB~r ! andB(r 8) of the type

B~r !5~2p!23E B~k8!e2 ik8•r dk8

and after going through some simple transformation, we fi
the following theoretical expression forf(t):

f aa~ t !5
n

~2p!3 E dk Faa~k,t !B~k!B~2k!. ~21!

Finally, after Fourier transformation according tofaa(v)
5(2p)21*2`

` faa(t)eivt dt we obtain the following result
for the friction coefficient:

zaa~v!5bn~2p!23E dk Saa~k,v!B~k!B~2k!, ~22!

where

Saa~k,v!5~2p!21E dt Faa~k,t !eivt ~23!

is the atom-atom dynamic structure factor.
Similarly, we now consider the friction tensorzab ac-

counting for the correlation between forces applied to diff
ent atoms~a and b! of the solute. In this case the forc
correlation functionfab5^Ba(t)Bb(0)& is determined as

f ab5E drE dr 8^dra~r ,t !drb~r 8,t !&B~r !B~r 8!, ~24!

wheredra anddrb are fluctuations in microscopic densitie
of particle numbers defined by Eq.~17!. Then the correlation
of density fluctuations is expressed in terms of the interm
diate scattering function for different atomsFab(k,t),

^dra~r ,t !drb~r 8,0!&5
n

~2p!3 E Fab~k,t !e2 ik•R dk.

~25!

Fab(k,t) is given by

Fab~k,t !5N21^ra~k,t !drb~2k,0!&. ~26!

The final result for the friction tensor, as in the case ofzaa ,
can then be formulated as

zab~v!5bn~2p!23E dk Sab~k,v!B~k!B~2k!, ~27!

where
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PRE 60 3817DENSITY DEPENDENCE OF VIBRATIONAL ENERGY . . .
Sab~k,v!5~2p!21E dt Fab~k,t !eivt ~28!

is the atom-atom dynamic structure factor for different
oms.

Next we consider more explicitly the structure of interm
diate scattering functions. IfR, Ri , and Rj are center of
mass coordinates of the solute and of solvent molec
~i and j!, then

ra5R1da , rg i5Ri1dg i, r d j5Rj1dd j ,

where vectorsda , dg i, anddd j describe positions of atom
a, g, andd with respect to the center of mass of the solu
and solvent molecules, respectively. Taking this into acco
we write explicit expressions for the intermediate scatter
functions,

Fab~k,t !5N21K eik•@R~ t !2R~0!#e2 ik•@da~ t !2db~0!#

3 (
g i ,d j

e2 ik•@Ri ~ t !2Rj ~0!#e2 ik•@dig~ t !2dj d~0!#L ,

~29!

Faa~k,t !5N21K eik•@R~ t !2R~0!#e2 ik•@da~ t !2da~0!#

3 (
g i ,d j

e2 ik•@Ri ~ t !2Rj ~0!#e2 ik•@dig~ t !2dj d~0!#L .

~30!

Factors exp$ik•@R(t)2R(0)#%, exp$ik•@da(t)2db(0)#%,
and exp$ik•@R(t)2R(0)#%3exp$ik•@da(t)2da(0)#% in
Eqs. ~29! and ~30! describe the influence of the solute mo
ecule on the dynamic structure factor of system. This in
ence is connected with the center of mass motion of
solute and with its intramolecular motion. But in the case
Faa at t50 this factor equals 1. In the same way the sums
Eqs. ~29! and ~30! take into account the intramolecular an
intermolecular motions of solvent particles.

In the case of a fluid without structured molecules t
functionF(k,t) becomes the ordinary intermediate scatter
function such that

F~k,0!5E S~k,v!dv5S~k!, ~31!

whereS(k) is the traditional static structure factor@17#

S~k!511nE dr @g~r !21#eik•r ~32!

andg(r ) is the pair distribution function of the solvent. Th
friction coefficient in Eq.~22! may be considered as the dra
coefficient for the generalized force between the vibratio
coordinate of the solute and its bath partners. By using
atom-atom structure factor there is no need to assume
the probe molecule does not move as in Ref.@8#. It is not
without interest that in our final formulas~22! the friction
coefficient is separated into contributions arising from
-
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structure and the dynamics of the medium, and from inter
tions of the excited molecule with the medium.

III. MODELS FOR THE DYNAMIC STRUCTURE FACTOR
OF SUPERCRITICAL FLUIDS

In order to estimate vibrational relaxation rates we need
employ a model for the dynamic structure factor. At first w
shall consider the static structure factor. Settingt50 in Eq.
~30! we obtain the atom-atom structure factor

Saa~k!5~n2N!21

3K (
g i ,d j

e2 ik•@Ri ~0!2Rj ~0!#e2 ik•@dig~0!2dj d~0!#L ,

~33!

where the factorn22 ~n is the number of atoms in a solven
molecule! is included in order to obtain the correct limit i
the case of a monoatomic fluid whendi g

5dj d
50. After

separating thei 5 j andiÞ j terms we find the expression fo
Saa in the form of the sum of intramolecular and interm
lecular contributions,

Saa~k!5Sintra~k!1Sinter~k!, ~34!

where

Sintra~k!5n22K (
g,d

e2 ik•@Ri ~0!2Rj ~0!#e2 ik•~dig2did!L ,

~35!

Sinter~k!5~n2N!21(
iÞ j

(
g,d

^e2 ik•~Ri2Rj !e2 ik•~dig2dj d!&,

~36!

and

di g
~0![di g

, dj d
~0![dj d

, Ri~0![Ri .

In the following we shall consider the rigid molecule a
proximation@17–19# such that

Sintra~k!5
1

n2 (
g,d

sinkdgd

kdgd
5

1

n2 S n1 (
gÞd

sinkdgd

kdgd
D ,

~37!

where dgd is the distance between atomsg and d in the
solvent molecule. This result is obtained after unweigh
averaging over the orientation of a molecule. The interm
lecular term is averaged over the angular pair distribut
function g(R12,v1 ,v2), wherev1 and v2 are orientations
of two molecules andR12 is the distance between their ce
ters of mass. Subtracting the term which corresponds to
ward scattering and expandingg(R12,v1 ,v2) in spherical
harmonics one can show@18,19# that

Sinter~k!5S 1

n (
g

sinkdig

kdig
D 2

~SC~k!21!1Sa~k!, ~38!

whereSC is the center of mass structure factor
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SC~k!511nE ~gC~R!21!e2 ik•R dR ~39!

and gC(R) is obtained after averaging over orientations
two molecules, i.e.,gC(R)5^g(R,v1 ,v2)&v1 ,v2

. The last

term Sa(k) is the so-called anisotropic part. It is small if th
anisotropic part of the intermolecular interaction is wea
The expression forSaa(k) becomes simpler in the case
diatomic molecules or when a molecule may be modeled
a two-site object. The static structure factor then simply
given by @17#

Saa~k!5
1

2 F11
sinkd

2kd G1S sinkd

kd D 2

~SC~k!21!1Sa~k!,

~40!

whered is the distance from the center of the solvent m
ecule to its site.

Let us consider some properties of this structure factor
the limit k→0 due to relations lim

k→0
sinkd/kd51 andSa(k)

50 for Saa(k) one gets

Saa~0!511nE ~gC~R!21!dR5b21nKT , ~41!

where KT is the isothermal compressibility. Correspon
ingly, limk→0 Sinter51 and limk→0 Sintra5

1
2 ~in the general

case limk→0Sintra51/n). It is very important that due to the
molecular structure the functionSC(k) is modulated by the
factor (sinkd/kd)2.

Further let us considerFab(k,t) at t50, that isSab(k).
On the basis of Eq.~29! for Fab(k,t) and Eq. ~30! for
Faa(k,t) we can see that the difference betweenSab(k,t)
and Saa(k,t) is connected with the term exp$ik•@da(0)
2db(0)#% containing the solute interatomic distance (da
2db). Averaging this factor over the molecular orientatio
we obtain the simple relation

Sab~k!5
sinkbab

kbab
Saa~k!, ~42!

where bab5uda2dbu. If atom a coincides with atomb
(bab50), we haveSab(k)5Saa(k). At k'` we obtain
Sab(`)50 becauseSaa(`)5n21. At k'0 we find that
Sab(0)5Saa(0). With increasing k the structure factor
Sab(k) decreases and becomes smaller thanSaa(k). There-
fore, one can expect thatzab is smaller thanzaa .

In recent years the structure of supercritical liquids h
been intensively investigated@20,21#. One important result
emerging from these studies is that the static long-ra
structure of supercritical fluids may be described by
Ornstein-Zernike expression. Taking this observation i
account, the static structure factor has the form@17,22#

SC~k!511
SC~0!21

11k2j2
. ~43!
f

.

s
s

-

n

s

e
e
o

Here SC(0)5b21nKT @17#, KT is the isothermal com-
pressibility, j is the correlation length for density fluctua
tions. Not far from the critical point one hasSC(0)@1, such
that

SC~k!511
SC~0!

11k2j2
. ~44!

In the following we shall use the inverse correlation leng
b5j21 such that Eq.~44! may be rewritten as

SC~k!215
SC~0!b2

b21k2
. ~45!

If the fluid approaches the critical point correlation lengthj
and isothermal compressibility diverge according to@22–24#

j5j0~ uDTu!2V, K5KT
0~ uDTu!2g,

wheren50.630,g51.2415 are the universal exponents,j0

and KT
0 are critical amplitudes,DT5(T2TC)/TC . The

quantitiesj0 and KT
0 are system dependent@25#. Along the

critical isotherm the correlation length and compressibil
behave as

j'uDru2n/b, KT'uDru2g/b,

whereDr5(r2rC)/rC and b50.324 is another universa
exponent.

In the following we consider a fluid with structureles
molecules. For modeling the dynamic structure factor
will use the short-time expansion of the intermediate scat
ing function,F( k̄,t), because this expansion corresponds
vibrational mode frequencies of the excited molecule. T
short-time expansion written as a Taylor series has the f
@26#

F~ k̄,t !5v0~ k̄!2
t2

2!
v2~ k̄!1

t4

4!
v4~ k̄!1¯ , ~46!

where we have included only the first three terms relevan
our discussion. The coefficients are defined as moment
the dynamic structure factor

vn~k!5
1

2p E
2`

`

v4S~ k̄,v!dv. ~47!

One can show easily@26# that

v0~ k̄!5S~ k̄!, v2~k!5~kn0!2, ~48!

wheren05A1/bms is the mean thermal velocity. The fourt
moment is expressed by the high-frequency elastic cons
C11(k) of the solvent@26#

v4~k!5k2~kn0!2C11~k!/msn. ~49!

Here ms is the solvent molecular mass andn is its number
density. The elastic constantC11(k) is given by@26#
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C11~k!53nkBT1
n2

k2 E dr̄ g~r !~12coskZ!
]2w

]z2
,

~50!

wherew is the solvent-solvent pair potential andg(r ) is the
corresponding pair distribution function. On the basis of
expansion Eq.~46! we extrapolate the time dependence
F(k,t) to longer times with the help of the simple functio

F~ k̄,t !5S~k!cosgdt/chgt. ~51!

Parametersg and d are determined by the requirement th
this function has the same short-time expansion as Eq.~46!.
The extrapolating function cosgdt/chgt was first suggested
by Douglass@27# and then successfully used by many a
thors~see, for example, the list of references in@7#!. Rewrit-
ing Eq. ~46! in the form F(k,t)/S(k)512At21Bt4 and
comparing with the short-time expansion of Eq.~51! results
in

g5AA~C21!/2, d5A~52C!/~C21!, ~52!

where

A5~kn0!2/2S~k!, B5k2~kn0!2C11~k!/24mnS~k!,
~53!

C56B/A2.

This leads to an expression for the dynamic structure fa
in the form

S~k,v!5p21S~k!E
0

` cosvt cosgdt

chgt
dt. ~54!

The integral in this formula can be calculated analytically
yield @28#

S~k,v!5
S~k!

g

ch~vp/2g!ch~pd/2!

ch~vp/2g!1cospd
~55!

or, considering Eqs.~52! and ~53!, we obtain

S~k,v!52S~k!AS~k!
ch~vp/2g!ch~pd/2!

ch~vp/2g!1cospd
. ~56!

For C.5 we get

S~k,v!5
2S~k!AS~k!

kn0AC21

ch~vp/2g!ch~pd/2!

ch~vp/2g!1cospd
, ~57!

where

d5A~C25!/~C21!. ~58!

Bear in mind that the Fourier componentB~k! of the force
B(r )52¹w(r ) has the form

B~k!5 ikw~k!,

where w~k! is the Fourier transform of the intermolecul
solute-solvent potentialw~r !. For the case when the vectork
is directed alongz axis we obtain
e
f

t

-

or

uBz~k!u25k2w2~k!. ~59!

In this way, we find the general formula for the rate of v
brational energy relaxation

KC5
2bn

n0m0~2p!3 E dk̄
s~k!As~k!

AC21
kf2~k!

ch
vp

g
ch

pd

2

ch
vp

g
1chpd

~60!

Now let us consider the derivation of the calculated fo
mula for the high-frequency elastic constantC11(k). For this
end we will use the expression

d2w

dz2
5

1

r

dw

dr
sin2 u1cos2 u

d2w

dr2
, ~61!

whereu is the angle between vectork̄ and r̄ . After integrat-
ing over the angleu we obtain

C11~k!5
3n

b
12pn2E

0

`

dr rw8~r !g~r !F1~kr !

12pn2E
0

`

dr r 2w9~r !g~r !F2~kr !. ~62!

Here,w8(r )5dw/dr, w9(r )5d2w/dr2,

F1~kr !5
4

k2 S 1

3
1

coskr

~kr !2 2
sinkr

~kr !3 D ,

~63!

F2~kr !5
2

k2 S 1

3
1

2 sinkr

~kr !3 2
sinkr

kr
2

2 coskr

~kr !2 D .

Below we will evaluate Eq.~62! for the Lennard-Jones po
tential on the basis of the Ornstein-Zernike expression for
pair distribution function with the help of Laplace metho
@29#.

The Ornstein-Zernike formula forg(r ) is given by

g~r !50 for 05<j2<sLJ ,
~64!

g~r !511
e2rbb2KT

4pbr
for r .sLJ ,

whereb51/j, andj is the correlation length for the densit
fluctuations. This leads to

C11~k!53n/b1
12«LJn

2e2aKTa2

b~a17!~a113!

3@~19a191! f 2~x!2~a11! f 1~x!#. ~65!

Herea5bsLJ , x5ksLJ , and«LJ andsLJ are parameters o
the Lennard-Jones potential

w~r !54«LJF S sLJ

r D 12

2S sLJ

r D 6G , ~66!

while the functionsf 1 and f 2 are defined as
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f 1~x!5
4

x2 S 1

3
1

cosx

x2 2
sinx

x3 D ,

~67!

f 2~x!5
2

x2 S 1

3
1

2 sinx

x3 2
sinx

x
2

2 cosx

x2 D .

The Ornstein-Zernike structure factor may be represente

S~x!5
kBTnKTa2

a21x2 1
x2

a21x2 . ~68!

For calculating the correlation length, which appears in
structure factor and inC11(k) we will use the following for-
mula @9#:

j5j0S Pc

G0rc
2D n/gFrS S ]P

]r D
T

2
Tr

T S ]P

]r D
T5Tr

D G n/g

, ~69!

wherej0 andG0 are the critical amplitudes which are syste
dependent. In addition,n andg are the critical exponents,Pc
and rc are the critical pressure and the critical density,
spectively. The temperatureTr is so-called reference tem
perature, which may be put equal to 1.5Tc or 2Tc @9#, where
Tc is the critical temperature. The term withTr in Eq. ~69! is
the background term which has to be subtracted fr
r(]r/]P)T to ensure thatj becomes vanishingly small fa
away from the critical point.

IV. CALCULATION OF VIBRATIONAL ENERGY
RELAXATION RATES AND ITS ANALYSIS

In the following we will compare our theoretical mod
with experimental results on the density dependence of
vibrational energy relaxation of azulene in supercritical fl
ids @1,2#. These experiments were done in fluid ethane a
propane at temperatures close to~;3 K! and far above the
critical temperature of the solvent. Relaxation rates were
culated for two kinds of solute-solvent potential, a repuls
and a Lennard-Jones potential as defined in Eq.~66!.

A simple and analytically convenient expression for t
repulsive potential is@30–32#

w~r !5« repe
2r /srep, ~70!

where « rep and s rep are potential parameters, which for
sequence of fluids are given in@30,31#. These parameter
differ from LJ parameter considerably, i.e.,« rep.«LJ , s rep
,sLJ . According to @32# s rep5sLJ / l , where l approxi-
mately equals 20. In what follows we will takel 520.

The Fourier transformation of this potential is given by

w~k!58p« reps rep
3 /~11k2s rep

2 !2 ~71!

and for uBz(k)u2 we obtain the expression

uBz~k!u2564p2« rep
2 s rep

6 k2/~11k2s rep
2 !4. ~72!

We note that the vectorkW is directed alongz axis.
The rate of vibrational energy relaxation for the repuls

potential is evaluated on the basis of Eq.~60! and is given by
by

e

-

e
-
d

l-
e

KC5
« rep

2

m0
64e2ss

2Abmsbn

3E
0

` dx vxx3

~ l 21x2!4

S~x!AS~x!

AC~x!21
F~v,x!. ~73!

Here x5kss , ss is the LJ parameter for the solvent,ms is
the mass of the solvent molecule,b5(kB

T), m0 is the reduced
mass of the solute oscillator, andv is some normal mode
frequency of the solute. The functionF(v,x) has the form

F~v,x!5ch
pd

2

e2~vp/2g!1e2~3vp/2g!

11e2~2vp/g!12e2~Ãp/g!chpd
~74!

for e,5. For the casec.5ch(¯) must be replaced with
cos(e). It should be noted that due to the rapid convergen
of the integral in Eq.~15! its upper limit was put to infinity.
The parameter« rep

2 /m0 we will consider as a fitting param
eter.

If solute-solvent interactions are described by a Lenna
Jones potential, the Fourier transformation is determin
with the help of@33#

G~n12!sinnp/2

2p2r n13
52

lim

l→0

1

~2p!3 E eip• r̄ 2lkn dk̄,

~75!

whereG(x) is theg function. Using this we obtain

w~k!58p2«LJsLJ
6 S sLJ

6 k9

10!
2

k3

4! D ~76!

and the rate of relaxation is given by

kC5
«LJ

2

m0

Abmsp
2sLJ

2 bn

9 E
0

x0
dx x3

3S x9

151 200
2x3D 2 S~x!AS~x!

AC~x!21
F~v,x!, ~77!

wherex5ksLJ , and the functionF(v,x) is determined as
before. In this case,x0 ~the upper limit of integration! is
considered as a fitting parameter.

The correlation lengths are calculated by Eq.~69! with the
help of tables of thermodynamic data@33#. The follow-
ing values of parameters were used for ethane:j0
51.9310210 m, G050.0563 @9#, Pc54.8713106 Pa, rc
5206.7 kg/m3; and for propane:j052310210 m, G0
50.058 @25#, Pc54.2483106 Pa, rc5220.5 kg/m3. In both
cases the critical exponents aren50.63, g51.242 @9#. The
calculated values ofj for ethane at 385 K and propane
396.5 K and 372.5 K are shown in Fig. 1.

At first, we discuss the numerical results forKC derived
from Eq.~73! using an Ornstein-Zernike structure factor a
a repulsive exponential potential to describe solute-solv
interactions. Computed and experimental values@1,2# for KC
are presented in Figs. 2 and 3. The fitting parameter«2/m0
equals 0.276 71310212J2/kg and 0.4744310212J2/kg, re-
spectively, corresponding to physically reasonable value
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From these figures we can conclude that the rate of re
ation of our model increases almost linearly, whereas
experimental values at half the critical density show a slow
increase ofKC with density. The linearKS(r)-dependence o
our model, however, is in agreement with a theory that u
a different structure factor@8#.

The linearity of the density dependence ofKC has a
straightforward explanation. The contribution of the rep
sive interaction in the integral Eq.~27! is dominant for large
magnitudes of wave vectors~the repulsive forces are larg
for small distances!. But in this region of wave vectors th
structure factor goes to unity and the information about
density dependence contained inS(k) and also inC11(k) is
partially washed out.

In some sense the situation is better for cases when
solute-solvent interaction described by a Lennard-Jones
tential is well beyond the critical density. Calculate

FIG. 1. Calculated density dependence of the correla
lengths. —-—, ethane atT5385 K; —, propane atT5372.5 K;
----, propane atT5396.5 K.

FIG. 2. Density dependence of the vibrational relaxation rateKc

for azulene in ethane at 385 K.d, Experiment~Refs. @1,2#!; —,
calculation for the LJ potential; ---, calculation for the repulsi
potential~with v53.5631013 s21 corresponding to the lower nor
mal mode frequency of azulene!.
x-
e
r

s

-

e

he
o-

KC-values for ethane atT5385 K and for propane atT
5396.5 K andT5372.5 K are plotted in Figs. 2–4 in com
parison with experimental data@1,2#. Again we use the
Ornstein-Zernike structure factor for these cases. The par
eter «2/m0 was put to 0.4639310215J2/kg. Fitting at the
upper limit of integration yieldsx058.10 for ethane andx0
58.64 for propane at 396.5 K andx058.75 at 372.5 K.

We note that the agreement between the calculated va
of the rateKC and the experimental values is satisfacto
beyond the critical density. At high densities the Ornste
Zernike approximation breaks down, and therefore we
not able to give a description of the density dependence
KC in this region on the basis of this approximation. T
upper limit of integration ofx0>8 corresponds to a distanc
of x50.75sLJ , which indicates that we take into account th
local environment of an excited molecule, which plays a s
nificant role in vibrational energy relaxation.

V. CONCLUSIONS

We have derived an expression for the vibrational rel
ation rate of a vibrationally excited molecule in supercritic

n FIG. 3. As in Fig. 2 for azulene in propane atT5396.5 K.

FIG. 4. As in Fig. 2 for azulene in propane atT5372.5 K.
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solvents in terms of the dynamic structure factor of the s
vent and the force describing the interaction between so
and solvent molecules. By using a hydrodynamic model
the dynamic structure factor we find a connection betw
the thermodynamic properties of the solvent and the rat
vibrational relaxation of the excited molecule. In additio
we establish a relation between the relaxation rate and
parameters of the solute-sovent interaction potential.

Calculations of vibrational relaxation rates of azulene
ethane and propane on the basis of a Lennard-Jones an
exponential repulsive potential permits us to reproduce
density dependence of the experimental rates in a quan
J

J.

ys

e

at

.

l-
te
r
n
of
,
he

an
e

ta-

tive and qualitative way both far from and close to the s
vent critical density.
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